摘要:Este trabajo tiene por objetivo presentar la valuación de opciones europeas a través del método probabilista utilizando distribuciones α-estables como una alternativa de valuación de opciones en el mercado mexicano. El uso de estas distribuciones para la modelación de series financieras permite superar la principal debilidad de la valuación clásica que supone normalidad al captar los efectos de las colas pesadas y la asimetría propias de las series financieras. Uno de los principales resultados que se encontró se refiere a los diferenciales en la valuación de opciones entre ambos modelos y el efecto de los parámetros de la distribución en los precios; para mostrar esta diferencia, se realiza la valuación de una opción de compra y una opción de venta sobre el tipo de cambio peso-dólar. De igual forma se calcularon las medidas de sensibilidad básicas de las opciones (delta, gama y rho) y se analizó el efecto del parámetro de estabilidad α en la volatilidad implícita de las opciones al asumir la valuación α-estable como el precio de mercado.
其他摘要:This paper aims to present the valuation of options using the Black-Scholes method assuming α-stable distributions as an alternative option valuation in the Mexican market. The use of α-stable distributions for modelling financial series allows to overcome the classical valuation main weakness which assumes normality, by capturing the presence of heavy tails and asymmetry in financial time series. One of the main results is the price differential between the two models and the effect of alpha and beta parameters on prices; to show the difference valuation is made of a call option and a put option for the peso-dollar exchange rate. Likewise, basic sensitivity measurements of options (delta, gamma, and rho) were made and the effect of the stability parameter (α) was made on the implied volatility of options assuming the α-stable price as the market price.
关键词:Distribuciones alfa estables; valuación de opciones; colas pesadas. Alpha stable distributions; options valuation; heavy tailed data.