摘要:Se considera el problema de la recuperación de imágenes desde una base de datos de imágenes. En particular, se recuperan las imágenes que pertenecen a una de las siguientes seis categorías: 1) aviones comerciales en la tierra, 2) aviones comerciales en el aire, 3) aviones de guerra en la tierra, 4) aviones de guerra en el aire, 5) avionetas en la tierra, y 6) avionetas en el aire. Primeramente se calcula una descripción con base en la transformada ondeleta de cada imagen mediante la ondeleta Daubechies-4. Los coeficientes resultantes se usan para entrenar una red neuronal. Durante la clasificación, se prueba el sistema con imágenes ya tratadas por la ya entrenada red neuronal. Se propusieron y probaron tres métodos diferentes para obtener los coeficientes de la ondeleta Daubechies-4: desde los canales de color RGB de la imagen completa, desde el histograma de la mayor ventana circular inscrita en los canales de color RGB de la imagen, y desde los histogramas de sub-imágenes cuadradas insertadas en los canales de color RGB de la imagen. Se usaron 120 imágenes para el entrenamiento de la red neuronal y 240 para probar el sistema. La mejor eficiencia de 88% se obtuvo con el tercer método.
其他摘要:The problem of retrieving images from a database is considered. In particular, we retrieve images belonging to one of the following six categories: 1) commercial planes in land, 2) commercial planes in air, 3) war planes in land, 4) war planes in air, 5) small aircraft in land, and 6) small aircraft in the air. During training, a wavelet-based description of each image is first calculated using Daubechies 4-wavelet transformation. The resulting coefficients are used to train a neural network (NN). During classification, test images are treated by the already trained NN. Three different ways to obtain the coefficients of the Daubechies transform were proposed and tested: from the entire image color channels, from the histogram of the biggest circular window inside the image color channels, and from the histograms of the square sub-images in the image color channels of the original image. 120 images were used for training and 240 for testing. The best efficiency of 88% was obtained with the third method.