首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:A Feed-Forward Neural Networks-Based Nonlinear Autoregressive Model for Forecasting Time Series
  • 本地全文:下载
  • 作者:Julián A. Pucheta ; Cristian M. Rodríguez Rivero ; Martín R. Herrera
  • 期刊名称:Computación y Sistemas
  • 印刷版ISSN:1405-5546
  • 出版年度:2011
  • 卷号:14
  • 期号:4
  • 语种:English
  • 出版社:Instituto Politécnico Nacional
  • 摘要:Se presenta un modelo auto-regresivo no lineal (ARN) basado en redes neuronales para el pronóstico de series temporales. La regla de aprendizaje para ajustar los parámetros de la red neuronal (RN) está basado en el método Levenberg-Marquardt en función de la dependencia estocástica de la serie temporal, proponemos una ley heurística que ajusta el proceso de aprendizaje y modifica la topología de la RN. Esta propuesta es experimentada sobre cinco series temporales. Tres son obtenidas de la ecuación de Mackey-Glass (MG) en un intervalo de tiempo. Las dos restantes son series históricas de lluvia acumulada mensualmente pertenecientes a dos lugares y tiempos diferentes, La Perla 1962-1971 y Santa Francisca 2000-2010, Córdoba, Argentina. El desempeño del esquema se muestra a través del pronóstico de 18 valores de cada serie temporal, donde el pronóstico fue simulado mediante Monte Carlo con de 500 realizaciones con ruido Gaussiano fraccionario para especificar la varianza.
  • 其他摘要:In this work a feed-forward NN based NAR model for forecasting time series is presented. The learning rule used to adjust the NN weights is based on the Levenberg-Marquardt method. In function of the long or short term stochastic dependence of the time series, we propose an online heuristic law to set the training process and to modify the NN topology. The approach is tested over five time series obtained from samples of the Mackey-Glass delay differential equations and from monthly cumulative rainfall. Three sets of parameters for MG solution were used, whereas the monthly cumulative rainfall belongs to two different sites and times period, La Perla 1962-1971 and Santa Francisca 200-2010, both located at Córdoba, Argentina. The approach performance presented is shown by forecasting the 18 future values from each time series simulated by a Monte Carlo of 500 trials with fractional Gaussian noise to specify the variance.
  • 关键词:Neural networks; time series forecast; Hurst's parameter; Mackey-Glass;Redes neuronales; pronóstico de series temporales; parámetro de Hurst; ecuación Mackey-Glass
国家哲学社会科学文献中心版权所有