摘要:Solution of Abstract Optimization problems with two or more conflicting functions or objectives by using metaheuristics has attracted attention of researches and become a rapidly developing area known as Multiobjective Optimization. Metaheuristics are non-exact techniques aimed to produce satisfactory solutions to complex optimization problems where exact techniques are not applicable; they are characterized by using some operators that are applied in a stochastic way according to a given parameterization. The settings of these parameters are usually established at the beginning of the execution of algorithms, and they remain unchanged until the search finishes. Recently, a number of papers studying adaptive modifications of these parameters on the fly have emerged. In this work, we report a study of the effect of using two operators in an adaptive way in two multiobjective metaheuristics representative of the state-of-the-art. The obtained results demonstrate that it is possible to improve the search performance of two chosen algorithms by using the adaptive scheme.
其他摘要:La optimización de problemas en los que hay maximizar o minimizar a la vez varias funciones, que usualmente están en conflicto entre sí, usando metaheurísticas, es un campo de investigación cada vez más popular, que ha dado lugar a una disciplina conocida como optimización multiobjetivo. Las metaheurísticas son técnicas no exactas que intentan proporcionar soluciones satisfactorias a problemas complejos de optimización en los que las técnicas exactas no son viables, y se caracterizan por usar una serie de operadores que se aplican de forma estocástica de acuerdo a cierta parametrización. Los valores de estos parámetros suelen ser establecidos al inicio de la ejecución de las técnicas y permanecen invariados hasta que éstas terminan, y recientemente están surgiendo trabajos que sugieren que dichos parámetros se modifiquen de forma adaptativa, según la marcha del algoritmo. En este trabajo se propone estudiar el efecto de usar dos operadores de forma adaptativa en dos metaheurísticas multiobjetivo representativas. Los resultados obtenidos indican que es posible mejorar el rendimiento de los algoritmos usando adaptatividad.