摘要:En este trabajo se propone una nueva ecuación diferencial fraccionaria que describe la ley de enfriamiento de Newton. El orden de la derivada a considerar es 0
其他摘要:In this contribution we propose a new fractional differential equation to describe the Newton cooling law. The order of the derivatives is 0<γ ≤1. In order to be consistent with the physical equation, a new parameter σ is introduced. This parameter characterizes the existence of fractional structures in the system. A relation between the fractional order time derivative γ and the new parameter σ is found. Due to this relation, the solutions of the corresponding fractional differential equations are given in terms of the Mittag-Leffler function depending only on the parameter γ. The classical cases are recovered by taking the limit when γ =1.
关键词:Cálculo fraccionario (CF); ley de enfriamiento de Newton; funciones de Mittag-Leffler; ecuaciones diferenciales fraccionarias; derivada de Caputo; difusión anómala; Fractional calculus; Newton cooling law; Mittag-Leffler functions; fractional differential equations; Caputo derivative; anomalous diffusion