首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:The Learning of an Opponent's Approximate Preferences in Bilateral Automated Negotiation
  • 本地全文:下载
  • 作者:Hamid Jazayeriy ; Masrah Azmi-Murad ; Nasir Sulaiman
  • 期刊名称:Journal of Theoretical and Applied Electronic Commerce Research
  • 印刷版ISSN:0718-1876
  • 电子版ISSN:0718-1876
  • 出版年度:2011
  • 卷号:6
  • 期号:3
  • 页码:65-84
  • 语种:English
  • 出版社:Universidad de Talca
  • 其他摘要:Autonomous agents can negotiate on behalf of buyers and sellers to make a contract in the e-marketplace. In bilateral negotiation, they need to find a joint agreement by satisfying each other. That is, an agent should learn its opponent's preferences. However, the agent has limited time to find an agreement while trying to protect its payoffs by keeping its preferences private. In doing so, generating offers with incomplete information about the opponent's preferences is a complex process and, therefore, learning these preferences in a short time can assist the agent to generate proper offers. In this paper, we have developed an incremental on-line learning approach by using a hybrid soft-computing technique to learn the opponent's preferences. In our learning approach, first, the size of possible preferences is reduced by encoding the uncertain preferences into a series of fuzzy membership functions. Then, a simplified genetic algorithm is used to search the best fuzzy preferences that articulate the opponent's intention. Experimental results showed that our learning approach can estimate the opponent's preferences effectively. Moreover, results indicate that agents which use the proposed learning approach not only have more chances to reach agreements but also will be able to find agreements with greater joint utility.
  • 关键词:Bilateral negotiation; Learning preferences; Uncertain information; Genetic algorithm; Emarketplace
国家哲学社会科学文献中心版权所有