期刊名称:Revista Latinoamericana de Investigación en Matemática Educativa
印刷版ISSN:1665-2436
电子版ISSN:2007-6819
出版年度:2001
卷号:4
期号:1
页码:63-92
出版社:Comité Latinoamericano de Matemática Educativa
摘要:Este estudio es una contribución a la investigación, en desarrollo, sobre el entendimiento y el aprendizaje de la introducción a la teoría de números de futuros profesores. El interés central de este artículo son los conceptos fundamentales de múltiplos, divisores y factores; los significados que construyen los estudiantes de estos tres conceptos, así como los vínculos entre las tres nociones y las conexiones con otros conceptos de la teoría elemental de números, tales como números primos, descomposición en números primos y divisibilidad. Enfocándose en las conexiones hechas entre los conceptos se analizaron diecinueve entrevistas clínicas de estudiantes de un curso para futuros profesores, donde se les pidió ejemplificar y explicar los conceptos, a la vez que aplicar sus concepciones en diversas situaciones problema. Un examen a las respuestas de los estudiantes mostró que los significados que asignan a los conceptos, a menudo, difiere de los significados que asignan los matemáticos al contexto de la teoría de números, y que los vínculos entre los conceptos son con frecuencia mínimos o incompletos.
其他摘要:This study is a contribution to the ongoing research on preservice teachers´ learning and understanding of introductory number theory. The focus of this article is on fundamental concept of factor, divisor, and multiple; the meaning students construct of these three concepts; and students´ links among the three notions as well as their connections to other concepts of elementary number theory, such as prime factors, prime decomposition and divisibility. Nineteen clinical interviews in which students in a course for preservice teachers were asked to explain and exemplify the concepts and to apply their understanding in several problem situations were analysed focusing on the connections students made among the concepts. An examination of students´ responses showed that the meaning they assign to the concepts is often different from the meaning assigned by mathematicians in the context of number theory, and that their links among the concepts are often weak or incomplete.