期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:5
页码:1434-1439
DOI:10.1073/pnas.1409476112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceStarvation-induced protein degradation by autophagy is considered to be nonselective. This study provides evidence, however, that upon nitrogen starvation fatty acid synthase is selectively degraded by autophagy. Our results suggest that fatty acid synthase degradation by the autophagic pathway is essential to maintain cell homeostasis under starvation. Autophagy, an evolutionarily conserved intracellular catabolic process, leads to the degradation of cytosolic proteins and organelles in the vacuole/lysosome. Different forms of selective autophagy have recently been described. Starvation-induced protein degradation, however, is considered to be nonselective. Here we describe a novel interaction between autophagy-related protein 8 (Atg8) and fatty acid synthase (FAS), a pivotal enzymatic complex responsible for the entire synthesis of C16- and C18-fatty acids in yeast. We show that although FAS possesses housekeeping functions, under starvation conditions it is delivered to the vacuole for degradation by autophagy in a Vac8- and Atg24-dependent manner. We also provide evidence that FAS degradation is essential for survival under nitrogen deprivation. Our results imply that during nitrogen starvation specific proteins are preferentially recruited into autophagosomes