期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:6
页码:1773-1778
DOI:10.1073/pnas.1424642112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceInositol pyrophosphates are messenger molecules incorporating the energetic pyrophosphate bond. Although they have been implicated in diverse biologic processes, their physiologic functions remain enigmatic. We show that the catalytic activity of inositol hexakisphosphate kinase 2 (IP6K2), one of the principal enzymes generating the inositol pyrophosphate IP7 (5-diphosphoinositolpentakisphosphate), mediates cancer cell migration and tumor metastasis both in cell culture and intact mice. In this process, IP6K2 diminishes cell-cell adhesion, enabling cells to invade the intercellular matrix. Drugs that inhibit IP6K2 may be beneficial in cancer therapy. The inositol pyrophosphates, molecular messengers containing an energetic pyrophosphate bond, impact a wide range of biologic processes. They are generated primarily by a family of three inositol hexakisphosphate kinases (IP6Ks), the principal product of which is diphosphoinositol pentakisphosphate (IP7). We report that IP6K2, via IP7 synthesis, is a major mediator of cancer cell migration and tumor metastasis in cell culture and in intact mice. IP6K2 acts by enhancing cell-matrix adhesion and decreasing cell-cell adhesion. This action is mediated by IP7-elicited nuclear sequestration and inactivation of the tumor suppressor liver kinase B1 (LKB1). Accordingly, inhibitors of IP6K2 offer promise in cancer therapy.