期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:6
页码:E576-E585
DOI:10.1073/pnas.1418084112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceThis paper describes the structure of Staphylococcus aureus TarM, an enzyme responsible for the glycosylation of wall teichoic acid that is important in pathological processes such as host immunity, phage binding, and antibiotic resistance in strains such as Methicillin-resistant S. aureus. The TarM structure is presented in an unusual ternary-like complex that features a polymeric acceptor substrate analogue and a trapped product of enzyme action, lending novel structural and mechanistic insight into the glycosylation of glycopolymers. More generally, the positioning of this product in the active site as well as the distorted conformation of its pyranose ring provide direct structural evidence for an internal substitution-like catalytic mechanism for retaining GT-B class enzymes. Unique to Gram-positive bacteria, wall teichoic acids are anionic glycopolymers cross-stitched to a thick layer of peptidoglycan. The polyol phosphate subunits of these glycopolymers are decorated with GlcNAc sugars that are involved in phage binding, genetic exchange, host antibody response, resistance, and virulence. The search for the enzymes responsible for GlcNAcylation in Staphylococcus aureus has recently identified TarM and TarS with respective - and {beta}-(1-4) glycosyltransferase activities. The stereochemistry of the GlcNAc attachment is important in balancing biological processes, such that the interplay of TarM and TarS is likely important for bacterial pathogenicity and survival. Here we present the crystal structure of TarM in an unusual ternary-like complex consisting of a polymeric acceptor substrate analog, UDP from a hydrolyzed donor, and an -glyceryl-GlcNAc product formed in situ. These structures support an internal nucleophilic substitution-like mechanism, lend new mechanistic insight into the glycosylation of glycopolymers, and reveal a trimerization domain with a likely role in acceptor substrate scaffolding.