A carne mecanicamente separada (CMS) de frango é uma matéria-prima cárnea produzida através de equipamentos próprios do tipo desossadores mecânicos, utilizando partes de frango de baixo valor comercial como o dorso e o pescoço. Para determinação do teor de CMS utilizada na composição de produtos cárneos comerciais construímos uma rede neural artificial do tipo Backpropagation (BP). O objetivo deste trabalho foi treinar, testar e aplicar uma rede do tipo BP, com três camadas de neurônios, para previsão do teor de CMS a partir do teor de minerais de salsichas formuladas com diferentes teores de carne de frango mecanicamente separada. Utilizamos a composição mineral de 29 amostras de salsicha contendo diferentes teores de CMS e 22 amostras de produtos cárneos comerciais. A topologia da rede foi 5-5-1. O erro quadrático médio no conjunto de treinamento foi de 2,4% e na fase de teste foi de apenas 3,8%. No entanto, a aplicação da rede às amostras comerciais foi inadequada devido à diferença de ingredientes das salsichas usadas no treinamento e os ingredientes das amostras comerciais. A rede neural construída para determinação do teor de carne mecanicamente separada mostrou-se eficiente durante a fase de treinamento e teste da rede.
Mechanically Deboned Poultry Meat (MDPM) is constituted of the neck and back from chicken carcasses that are extracted in machine. An artificial neural network of the Back-Propagation type was built to determine the amount of MDPM in the composition of commercial foods. The objective of this work was to train, evaluate and apply a network of the Back-Propagation type, with three layers of neurons, in predicting the amount of MDPM in relation to the amount of minerals in the sausage. We used the mineral composition of 29 product samples that contained different amounts of MDPM and 23 commercial samples. The topology of the network was a 5-5-1. The average quadratic error in the training group was of 2.4%, while in the test phase it was 3.8%. The application of the network to commercial samples was inadequate due to diversity of the ingredients used in the training and those found in commercial samples. The neural network developed for determining the MDPM was shown to be efficient in both the training phase and the test.