Este trabalho foi conduzido com o objetivo de implementar um modelo computacional empregando a linguagem de simulação EXTEND TM para: a) simular a dinâmica de atividades de um matadouro-frigorífico de aves; e b) conduzir experimentos de análise de sensibilidade. Para tanto, foi implementado um modelo dinâmico, estocástico e discreto. O sistema real modelado está localizado na região sudoeste do Paraná, onde são abatidas cerca de 500000 aves por dia, empregando três linhas de processamento operando em três turnos diários. Na validação do modelo foram coletados dados relativos a três turnos e comparadas as variáveis de saída obtidas a partir do sistema real e as geradas pelo modelo, as quais foram: i) tempo de processamento; ii) peso vivo total; iii) peso vivo aproveitado; iv) peso de subproduto; v) peso da produção total; vi) peso do frango inteiro; e vii) peso total dos cortes. O modelo implementado demonstrou ser aplicável, uma vez que os erros médios percentuais foram inferiores a 1,13%. O experimento de análise de sensibilidade conduzido, mediante as alterações das velocidades de processamento das linhas em 7000, 8000 e 9000 frangos h-1, apresentou os seguintes valores médios para a variável tempo de processamento: 8,69; 7,86 e 7,86 horas, respectivamente. Além disso, o experimento demonstrou que a velocidade de processamento de 9000 frangos h-1 não implica na direta redução do tempo de processamento, pois a cadência de chegada das cargas pode ter ocasionado períodos de ociosidade do matadouro-frigorífico.
This work was carried out with the objective of developing a computational model using the simulation language EXTEND TM to simulate the dynamic of poultry slaughter industry and conduct sensitivity analysis experiments. Hence, a dynamic, stochastic, discrete model was developed. The modeled real system is located in the southwestern region of the Paraná State, Brazil, which has a daily slaughter capacity of 500000 poultries using three processing lines and operating in three daily schedules. To validate the model data from three schedules were collected and compared to the output variables from the real system generated by the model; those variables were: (i) processing time; (ii) gross weight; (iii) live weight; (iv) sub-product weight; (v) total production weight; (vi) whole slaughtered weight; and (vii) net weight. The model implemented proved to be efficient since the percentage of average errors was less than 1.13%. The sensitivity analysis carried out, with processing rates changed to 7000; 8000 and 9000 poultries per hour per line, showed the following processing time averages 8.69, 7.86 and 7.86 hours, respectively. In addition, the experiment demonstrated that the processing rate of 9000 poultries h-1 does not imply directly a reduction of the processing time since the rate of poultry arriving at the slaughterhouse can be related to idle periods at poultry slaughter facility.