Apresentamos neste trabalho uma heurística que procura determinar uma solução para o problema de corte de estoques unidimensional com um número reduzido de padrões. A heurística é composta de 3 fases. Na primeira geram-se padrões sucessivamente que são aceitos caso tenham desperdício limitado. Cada padrão aceito é repetido o máximo possível, sem que itens sejam cortados além da demanda. Neste processo de geração de padrões priorizam-se itens grandes e itens com demandas grandes. Na segunda fase, o problema residual é resolvido e, na terceira fase, uma técnica de redução de padrões da literatura é utilizada. Os testes computacionais realizados mostram que o método proposto não é dominado pelos algoritmos existentes na literatura.
In this work we present a heuristic that tries to determine a solution for the one-dimensional cutting stock problem with a reduced number of patterns. The heuristic is composed of 3 phases. In the first, patterns are generated successively, and they will be accepted if they have limited waste. Each accepted pattern is repeated as many times as possible avoiding cutting items in order to keep the demand. In this pattern, the generation process priority is given to large items and items with large demands. In the second phase, the residual problem is solved and, in the third phase, a pattern reduction technique reported in the literature is used. The computational tests performed show that the proposed method is not dominated by the existing algorithms in the literature.