O Sistema de Atendimento Móvel de Urgência (SAMU) no Brasil é um sistema médico emergencial de responsabilidade do poder público, em que a demanda de usuários em uma região urbana é usualmente separada por subregiões e classes de chamados emergenciais. Essa demanda pode mudar de forma significativa ao longo do dia, geograficamente e temporalmente, devido à sua natureza aleatória, mas também devido aos diferentes padrões de comportamentos da população ao longo do dia. Por exemplo, tipicamente há menos demanda durante a noite do que de dia. Os objetivos deste trabalho são: verificar se o conhecido modelo hipercubo de filas espacialmente distribuídas é adequado para analisar medidas de desempenho do SAMU, tais como tempos médios de resposta aos usuários, e utilizar este modelo para analisar múltiplas alternativas de localização das ambulâncias, explorando variações importantes da demanda e do serviço ao longo do dia. Para verificar a viabilidade e a aplicabilidade desta abordagem, foi realizado um estudo de caso no SAMU de Ribeirão Preto-SP.
The Brazilian emergency medical system SAMU (Sistema de Atendimento Móvel de Urgência) is an emergency medical system of public government liability, in which the users' service demand in an urban region is usually separated into subregions and classes of emergency calls. This demand can change substantially during the day, geographically and temporally, due to its random nature and also to the different behavior patterns of the population throughout the day. For instance, typically there is less demand during the night hours than during the day. The goals of this study are to verify whether the hypercube queuing model is adequate to analyze performance measures of SAMU, such as mean response times to the users, and use this model to analyze multiple alternatives of ambulance location considering significant variations in the demand and service throughout the day. In order to verify the feasibility and applicability of this approach, a case study was conducted in the SAMU of Ribeirão Preto-SP.