摘要:This work describes an approach to synergistically exploit ambient intelligence technologies, mobile devices, and evolutionary computation in order to support blended commerce or ubiquitous commerce scenarios. The work proposes a software architecture consisting of three main components: linked data for e-commerce, cloud-based services, and mobile apps. The three components implement a scenario where a shopping mall is presented as an intelligent environment in which customers use NFC capabilities of their smartphones in order to handle e-coupons produced, suggested, and consumed by the abovesaid environment. The main function of the intelligent environment is to help customers define shopping plans, which minimize the overall shopping cost by looking for best prices, discounts, and coupons. The paper proposes a genetic algorithm to find suboptimal solutions for the shopping plan problem in a highly dynamic context, where the final cost of a product for an individual customer is dependent on his previous purchases. In particular, the work provides details on the Shopping Plan software prototype and some experimentation results showing the overall performance of the genetic algorithm.