首页    期刊浏览 2024年09月21日 星期六
登录注册

文章基本信息

  • 标题:Non-reacting Flow Analysis from Combustor Inlet to Outlet using Computational Fluid Dynamics Code
  • 本地全文:下载
  • 作者:G. Ananda Reddy ; V. Ganesan
  • 期刊名称:Defence Science Journal
  • 印刷版ISSN:0976-464X
  • 出版年度:2004
  • 卷号:54
  • 期号:4
  • 页码:455-467
  • DOI:10.14429/dsj.54.2059
  • 语种:English
  • 出版社:Defence Scientific Information & Documentation Centre
  • 摘要:This paper describes non-reacting flow analysis of a gas turbine combustion system. The method is based on the solution of Navier-Strokes equations using generalised non-orthogonal coordinate system. The turbulence effects are modelled through the renormalisation group k-E model. The method has been applied to a practical gas turbine combustor. The combustion system includes swirler vane passages, fuel nozzles, rotor bleed, customer bleed, air-blast atomiser, swirl cone, and all holes in primary , dilution , dome, flare, and cooling ring. The total geometry has been created using the pre-processors GAMBIT and CATIA, and the meshing has been done using GAMBIT, and the analysis carried out in a FLUENT solver. The interaction between the diffuser and the combustor external flows plays a key role in controlling the pressure loss, air flow distribution around the combustor liner, durability, and stability. The aero gas turbine combustor designs are generally guided by experimental methods and past experience; however, experimental methods are inherently slow, costly, especially at high temperature engine-operating conditions. These drawbacks and the growing need to understand the complex flow-field phenomenon involved, have led to the development of a numerical model for predicting flow in the gas turbine combustor. These models are used to optimise the design of the combustor and its subcomponents, and reduce cost, time, and the number of experiments.
  • 关键词:Non-reacting flow;computational fluid dynamics;combustor;turbulence;continuity;total-pressure loss;static pressure recovery coefficient;swirler;CFD;gas turbine combustion;flow-field phenomenon;diffuser-combustor flow interaction
国家哲学社会科学文献中心版权所有