首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:EXPLOITING UNLABELED DATA IN CONCEPT DRIFT LEARNING
  • 本地全文:下载
  • 作者:Dwi Hendratmo Widyantoro
  • 期刊名称:Jurnal Informatika
  • 印刷版ISSN:1411-0105
  • 出版年度:2007
  • 卷号:8
  • 期号:1
  • 页码:pp. 54-62
  • DOI:10.9744/informatika.8.1.pp. 54-62
  • 语种:English
  • 出版社:Institute of Research and Community Outreach - Petra Christian University
  • 摘要:Learning unlabeled data in a drifting environment still receives little attention. This paper presents a concept tracker algorithm for learning concept drift that exploits unlabeled data. In the absence of complete labeled data, instance classes are identified using a concept hierarchy that is incrementally constructed from data stream (mostly unlabeled data) in unsupervised mode. The persistence assumption in temporal reasoning is then applied to infer target concepts. Empirical evaluation that has been conducted on information-filtering domains demonstrates the effectiveness of this approach.
  • 关键词:concept drift learning, unlabeled data, persistence assumption.
国家哲学社会科学文献中心版权所有