首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Diagnosis Model Based on Least Squares Support Vector Machine Optimized by Multi-swarm Cooperative Chaos Particle Swarm Optimization and Its Application
  • 本地全文:下载
  • 作者:Ding, Guojun ; Wang, Lide ; Yang, Peng
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2013
  • 卷号:8
  • 期号:4
  • 页码:975-982
  • DOI:10.4304/jcp.8.4.975-982
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:The classification accuracy of the least squares support vector machine (LSSVM) models strongly depends on proper setting of its parameters. An optimal selection approach of LSSVM parameters is put forward based on multi-swarm cooperative chaos particle swarm optimization (MCCPSO) algorithm. Chaos particle swarm optimization (CPSO) can improve the ability of local search optimization with good robust and adaptable. Multi-swarm cooperative particle swarm optimization (MCPSO) algorithm is master-slave heuristic method with a good global search. Then the MCCPSO-LSSVM diagnosis model is used to diagnosing analog circuit fault. Simulation results show that MCCPSO algorithm can jump out of local optimums with fast convergence and good stability. Results for analog circuit fault diagnosis show that the proposed method has strong robustness, and high accuracy.
  • 关键词:parameter optimization;particle swarm optimization;analog circuit;multi-swarm cooperative chaos particle swarm optimization
国家哲学社会科学文献中心版权所有