首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Semi-supervised Ensemble Approach for Mining Data Streams
  • 本地全文:下载
  • 作者:Liu, Jing ; Xu, Guo-sheng ; Xiao, Da
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2013
  • 卷号:8
  • 期号:11
  • 页码:2873-2879
  • DOI:10.4304/jcp.8.11.2873-2879
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:There are many challenges in mining data streams, such as infinite length, evolving nature and lack of labeled instances. Accordingly, a semi-supervised ensemble approach for mining data streams is presented in this paper. Data streams are divided into data chunks to deal with the infinite length. An ensemble classification model E is trained with existing labeled data chunks and decision boundary is constructed using E for detecting novel classes. New labeled data chunks are used to update E while unlabeled ones are used to construct unsupervised models. Classes are predicted by a semi-supervised model Ex which is consist of E and unsupervised models in a maximization consensus manner, so better performance can be achieved by using the constraints from unsupervised models with limited labeled instances. Experiments with different datasets demonstrate that our method outperforms conventional methods in mining data streams.
  • 关键词:data stream mining;semi-supervised learning;novel class;concept drifting
国家哲学社会科学文献中心版权所有