首页    期刊浏览 2025年06月05日 星期四
登录注册

文章基本信息

  • 标题:Optimal Kernel Marginal Fisher Analysis for Face Recognition
  • 本地全文:下载
  • 作者:Wang, Ziqiang ; Sun, Xia
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2012
  • 卷号:7
  • 期号:9
  • 页码:2298-2305
  • DOI:10.4304/jcp.7.9.2298-2305
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Nonlinear dimensionality reduction and face classifier selection are two key issues of face recognition. In this paper, an efficient face recognition algorithm named OKMFA is proposed. The core idea of the algorithm is as follows. First, the high-dimensional face images are mapped into lower-dimensional discriminating feature space by using the feature vector selection-based optimal kernel marginal Fisher analysis(KMFA), then the multiplicative update rule-based optimal SVM classifier is applied to recognize different facial images herein. Extensive experimental results on two benchmark face databases demonstrate the effectiveness and efficiency of the proposed algorithm.
  • 关键词:face recognition;kernel marginal Fisher;support vector machine
国家哲学社会科学文献中心版权所有