首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Sensor Fault Diagnosis Based on Ensemble Empirical Mode Decomposition and Optimized Least Squares Support Vector Machine
  • 本地全文:下载
  • 作者:Ding, Guojun ; Wang, Lide ; Shen, Ping
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2013
  • 卷号:8
  • 期号:11
  • 页码:2916-2924
  • DOI:10.4304/jcp.8.11.2916-2924
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:A fault diagnosis method for sensor fault based on ensemble empirical mode decomposition (EEMD) energy entropy and optimized structural parameters least squares support vector machine (LSSVM) is put forward in this paper. Firstly, the original output fault signals are pretreatment with EEMD, and then the EEMD energy entropy is extracted as the fault feature vector. Then the radial basis function (RBF) kernel function parameters and the regularization parameter of LSSVM are optimized by using chaotic particle swarm optimization (CPSO) algorithm. Finally, with the applying of proposed diagnosis method, the model of sensor fault diagnosis is built for identification and decision. The diagnostic results show that the proposed method can identify sensor fault effectively and accurately.
  • 关键词:Fault diagnosis;EEMD energy entropy;LSSVM;CPSO;Pressure sensor
国家哲学社会科学文献中心版权所有