首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A Fast and Efficient Algorithm for Finding Frequent Items over Data Stream
  • 本地全文:下载
  • 作者:Chen, Ling ; Chen, Yixin ; Tu, Li
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2012
  • 卷号:7
  • 期号:7
  • 页码:1545-1554
  • DOI:10.4304/jcp.7.7.1545-1554
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:We investigate the problem of finding the frequent items in a continuous data stream. We present an algorithm called λ-Count for computing frequency counts over a user specified threshold on a data stream. To emphasize the importance of the more recent data items, a fading factor l is used. Our algorithm can detect ε -approximate frequent items of a data stream using O (logλε) memory space and O (1) time to process each data record. The computation time for answering each query is O ( ), and for answering a query about the frequentness of a given data item is O (1). Experimental study shows that λ-Count outperforms other methods in terms of accuracy, memory requirement, and processing speed.
  • 关键词:Data mining;data stream;frequent items
国家哲学社会科学文献中心版权所有