首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Gaussian Process Latent Variable Models for Inverse Kinematics
  • 本地全文:下载
  • 作者:Qu, Shi ; Yu, Ronghuan ; Wei, Yingmei
  • 期刊名称:Journal of Multimedia
  • 印刷版ISSN:1796-2048
  • 出版年度:2011
  • 卷号:6
  • 期号:1
  • 页码:48-55
  • DOI:10.4304/jmm.6.1.48-55
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:We present an inverse kinematics solver based on Gaussian process latent variable models (GP-LVM). Because of the high-dimension of motion capture data, Analyzing them directly is a very hard work. We map the motion capture data from higher-dimensional observation space to two-dimensional latent space based on  GP-LVM, then, find out the representative poses of virtual character by clustering the motion capture data in latent space. Finally, weight the representative poses and optimize the weights, combined with constraints on the end effectors, in order to synthesize the optimized pose. The experiments show that our method obtains satisfying effects.
  • 关键词:character animation;kernel function;dimensionality reduction;clustering analysis;inverse kinematics
国家哲学社会科学文献中心版权所有