首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Modified Mountain Clustering Algorithm based on Hill Valley Function
  • 本地全文:下载
  • 作者:Wang, Junnian ; Liu, Deshun ; Liu, Chao
  • 期刊名称:Journal of Networks
  • 印刷版ISSN:1796-2056
  • 出版年度:2011
  • 卷号:6
  • 期号:6
  • 页码:916-922
  • DOI:10.4304/jnw.6.6.916-922
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:A modified mountain clustering algorithm based on the hill valley function is proposed. Firstly, the mountain function is constructed on the data space, with estimating the parameter by a correlation self-comparison method, and database’s mountain function values are computed. Secondly, the hill valley function is introduced to partition the data distributed on each peak. If the hill valley function’ value of two datum equal to 0, it means these two datum are on the same mountain and belong to the same cluster, otherwise they are not. Finally, the data in a cluster with maximum mountain function value is selected as the cluster centre of this cluster. The testing of four databases indicate that the proposed clustering algorithm can categorise the data numbers in each cluster and find all the cluster centres exactly, and no need  priori parameters and stopping criterion correlating to the database.
  • 关键词:data cluster; hill valley function; mountain clustering method; correlation self-comparison method
国家哲学社会科学文献中心版权所有