摘要:In order to overcome the difficulties of low computational efficiency and high memory requirement in the conventional boundary element method for solving large-scale potential problems, a fast multipole boundary element method for the problems of Laplace equation is presented. through the multipole expansion and local expansion for the basic solution of the kernel function of the Laplace equation, we get the boundary integral equation of Laplace equation with the fast multipole boundary element method; and gives the calculating program of the fast multipole boundary element method and processing technology; finally, a numerical example is given to verify the accuracy and high efficiency of the fast multipole boundary element method.
关键词:Boundary Element Method;Fast Multipole Methods;Fast Multipole Boundary Element Method;Potential Problems;Laplace Equation