摘要:In the speed sensorless vector control system, the amended method of estimating the rotor speed about model reference adaptive system (MRAS) based on radial basis function neural network (RBFN) for PMSM sensorless vector control system was presented. Based on the PI regulator, the radial basis function neural network which is more prominent learning efficiency and performance is combined with MRAS. The reference model and the adjust model are the PMSM itself and the PMSM current, respectively. The proposed scheme only needs the error signal between q axis estimated current and q axis actual current. Then estimated speed is gained by using RBFN regulator which adjusted error signal. Comparing study of simulation and experimental results between this novel sensorless scheme and the scheme in reference literature, the results show that this novel method is capable of precise estimating the rotor position and speed under the condition of high or low speed. It also possesses good performance of static and dynamic.
关键词:permanent magnet synchronous motor;vector space control;sensorless;model reference adaptive system;radial basis function neural network