首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Novel PSO Algorithm Based on Local Chaos & Simplex Search Strategy and its Application
  • 本地全文:下载
  • 作者:Song, Shengli ; Gan, Yong ; Kong, Li
  • 期刊名称:Journal of Software
  • 印刷版ISSN:1796-217X
  • 出版年度:2011
  • 卷号:6
  • 期号:4
  • 页码:604-611
  • DOI:10.4304/jsw.6.4.604-611
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:To improve particle swarm optimization (PSO) computing performance, the centroid of particle swarm is firstly introduced in standard PSO model to enhance inter-particle cooperation and information sharing capabilities, then combining randomness and ergodicity of the strong chaotic motion and fast convergence of the simplex method, a novel particle swarm optimization algorithm with adaptive space mutation (CSM-CPSO) is proposed to improve local optimum efficiency and global convergence performance of PSO algorithm. Results of Benchmark function simulation and the material balance computation (MBC) in alumina production show the new algorithm has not only steady convergence and better stability, but also higher precision and faster convergence speed, and also can avoid the premature convergence problem effectively.
  • 关键词:Particle Swarm Optimization;Centroid;Chaos;Simplex;Information Sharing
国家哲学社会科学文献中心版权所有