首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:UDS-FIM: An Efficient Algorithm of Frequent Itemsets Mining over Uncertain Transaction Data Streams
  • 本地全文:下载
  • 作者:Wang, Le ; Feng, Lin ; Wu, Mingfei
  • 期刊名称:Journal of Software
  • 印刷版ISSN:1796-217X
  • 出版年度:2014
  • 卷号:9
  • 期号:1
  • 页码:44-56
  • DOI:10.4304/jsw.9.1.44-56
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:In this paper, we study the problem of finding frequent itemsets from uncertain data streams. To the best of our knowledge, the existing algorithms cannot compress transaction itemsets to a tree as compact as the classical FP-Tree, thus they need much time and memory space to process the tree. To address this issue, we propose an algorithm UDS-FIM and a tree structure UDS-Tree. Firstly, UDS-FIM maintains probability values of each transactions to an array; secondly, compresses each transaction to a UDS-Tree in the same manner as an FP-Tree (so it is as compact as an FP-Tree) and maintains index of probability values of each transaction in the array to the corresponding tail-nodes; lastly, it mines frequent itemsets from the UDS-Tree without additional scan of transactions. The experimental results show that UDS-FIM has achieved a good performance under different experimental conditions in terms of runtime and memory consumption.
  • 关键词:frequent itemset;frequent pattern;uncertain dataset;data streams;data mining
国家哲学社会科学文献中心版权所有