首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Target Tracking Based on Optimized Particle Filter Algorithm
  • 本地全文:下载
  • 作者:Meng, Junying ; Liu, Jiaomin ; Wang, Juan
  • 期刊名称:Journal of Software
  • 印刷版ISSN:1796-217X
  • 出版年度:2013
  • 卷号:8
  • 期号:5
  • 页码:1140-1144
  • DOI:10.4304/jsw.8.5.1140-1144
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Particle filter is a probability estimation method based on Bayesian framework and it has unique advantage to describe the target tracking non-linear and non-Gaussian. In this paper, Firstly, analyses the particle degeneracy and sample impoverishment in particle filter multi-target tracking algorithm, and secondly, it applies Markov Chain Monte Carlo (MCMC) method to improve re-sampling process and enhance performance of particle filter algorithm. Finally, the performance of the proposed method is certificated by experiment that tracking multiple targets of similar appearance and complex motion. The results show the efficacy of the proposed method in multi-target tracking.
  • 关键词:particle filter;multi-target tracking;sequential important sampling;MCMC
国家哲学社会科学文献中心版权所有