摘要:Large-scale social networks emerged rapidly in recent years. Social networks have become complex networks. The structure of social networks is an important research area and has attracted much scientific interest. Community is an important structure in social networks. In this paper, we propose a community detection algorithm based on influential nodes. First, we introduce how to find influential nodes based on random walk. Then we combine the algorithm with order statistics theory to find community structure. We apply our algorithm in three classical data sets and compare to other algorithms. Our community detection algorithm is proved to be effective in the experiments. Our algorithm also has applications in data mining and recommendations.