首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A Simple but Effective Maximal Frequent Itemset Mining Algorithm over Streams
  • 本地全文:下载
  • 作者:Li, Haifeng ; Zhang, Ning ; Chen, Zhixin
  • 期刊名称:Journal of Software
  • 印刷版ISSN:1796-217X
  • 出版年度:2012
  • 卷号:7
  • 期号:1
  • 页码:25-32
  • DOI:10.4304/jsw.7.1.25-32
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Maximal frequent itemsets are one of several condensed representations of frequent itemsets, which store most of the information contained in frequent itemsets using less space, thus being more suitable for stream mining. This paper considers a simple but effective algorithm for mining maximal frequent itemsets over a stream landmark. We design a compact data structure named FP-FOREST to improve an state-of-the-art algorithm INSTANT; thus, itemsets can be compressed and the support counting can be effective performed. Our experimental results show our algorithm achieves a better performance in memory cost and running time cost.
国家哲学社会科学文献中心版权所有